Use of Physical Characteristic Data for Landuse Planning in Agriculture Activities: Conceptual Design

Ahmad Priyo Sambodo, Yoesep Budianto, Rusma Prima Rokhmaningtyas, Muhammad Geyn Noveberian

Abstract


The absence of standard parameters in land use planning threaten the quality of land resources and leads to a decline in agricultural productivity, especially in Indonesia. Identification of erosion process, productivity index, and slope conditions could be considered for land use planning, especially for agriculture. Since 2018, the Indonesian government has provided a national seamless Digital Elevation Model, called DEMNAS, which has 8,5 meters resolution for development planning purposes, including environmental research. This paper aims to design a conceptual framework for utilizing the physiographic conditions, erosion identification, and projecting the productivity with productivity index values as a basis for land-use planning. The concept is formulated by using available data and literature studies, related to land resource management. The conceptual design from this study can be helpful for land use planning purposes, especially if the good quality of data provided.


Full Text:

PDF

References


Arsyad, S. (2010). Konservasi Tanah & Air. Retrieved from https://books.google.co.id/books?id=g52mtQEACAAJ

Badan Informasi Geospasial. (2018). DEMNAS: Seamless Digital Elevation Model (DEM) dan Batimetri Nasional. Retrieved April 27, 2019, from http://tides.big.go.id/DEMNAS/

Blanco, H., & Lal, R. (2010). Principles of soil conservation and management (1. softcover print). Dordrecht: Springer.

Boardman, J., & Poesen, J. (Eds.). (2006). Soil erosion in Europe. Chichester, England ; Hoboken, NJ: Wiley.

Budianto, Y. (2016). Keterdapatan Sensitive Clay Pada Lokasi Longsorlahan di DAS Bompon, Kabupaten Magelang, Jawa Tengah (Universitas Gadjah Mada). Retrieved from http://new.etd.repository.ugm.ac.id/home/detail_pencarian/104056

Dai, F. C., Lee, C. F., & Ngai, Y. Y. (2002). Landslide risk assessment and management: An overview. Engineering Geology, 64(1), 65–87. https://doi.org/10.1016/S0013-7952(01)00093-X

Dobos, E., & Hengl, T. (2009). Chapter 20 Soil Mapping Applications. In Developments in Soil Science (Vol. 33, pp. 461–479). https://doi.org/10.1016/S0166-2481(08)00020-2

Duan, X., Xie, Y., Feng, Y., & Yin, S. (2009). Study on the Method of Soil Productivity Assessment in Black Soil Region of Northeast China. Agricultural Sciences in China, 8(4), 472–481. https://doi.org/10.1016/S1671-2927(08)60234-5

Duan, X., Xie, Y., Liu, B., Liu, G., Feng, Y., & Gao, X. (2012). Soil loss tolerance in the black soil region of Northeast China. Journal of Geographical Sciences, 22(4), 737–751. https://doi.org/10.1007/s11442-012-0959-5

Duan, X., Xie, Y., Ou, T., & Lu, H. (2011). Effects of soil erosion on long-term soil productivity in the black soil region of northeastern China. CATENA, 87(2), 268–275. https://doi.org/10.1016/j.catena.2011.06.012

Hengl, T., & MacMillan, R. A. (2009). Chapter 19 Geomorphometry — A Key to Landscape Mapping and Modelling. In Developments in Soil Science (Vol. 33, pp. 433–460). https://doi.org/10.1016/S0166- 2481(08)00019-6

Jain, S. K., Kumar, S., & Varghese, J. (2001). Estimation of Soil Erosion for a Himalayan Watershed Using GIS Technique. Water Resources Management, 15(1), 41–54. https://doi.org/10.1023/A:1012246029263

Jenny, H. (1994). Factors of soil formation: A system of quantitative pedology. New York: Dover.

Li, L., Du, S., Wu, L., & Liu, G. (2009). An overview of soil loss tolerance. CATENA, 78(2), 93–99. https://doi.org/10.1016/j.catena.2009.03.007

Montgomery, D. R. (2007). Soil erosion and agricultural sustainability. Proceedings of the National Academy of Sciences, 104(33), 13268–13272. https://doi.org/10.1073/pnas.0611508104

Noveberian, M. G. (2017). Pemetaan Rumah Rentan Longsor dan Rentan Tertimbu Longsor di Daerah Aliran Sungai (DAS) Bompon, Kabupaten Magelang (Universitas Gadjah Mada). Retrieved from http://new.etd.repository.ugm.ac.id/home/detail_pencarian/111578

Pierce, F. J., Larson, W. E., Dowdy, R. H., & Graham, W. A. P. (1983). Productivity of soils: Assessing long-term changes due to erosion. Journal of Soil and Water Conservation, 38(1), 39–44.

Renard, K. G., & Service, U. S. A. R. (1997). Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). Retrieved from https://books.google.co.id/books?id=cQEUAAAAYAAJ

Rokhmaningtyas, R. P. (2017). Estimasi Kehilangan Tanah Aktual Terkait Pengaruh Vegetasi di DAS Bompon (Universitas Gadjah Mada). Retrieved from http://new.etd.repository.ugm.ac.id/home/detail_pencarian/111273

Sambodo, A. P. (2016). Perhitungan Nilai Ambang Batas Erosi dengan metode Modified Productivity Index di Daerah Aliran Sungai Bompon, Kabupaten Magelang, Jawa Tengah (Universitas Gadjah Mada). Retrieved from http://new.etd.repository.ugm.ac.id/home/detail_pencarian/104726

Scalenghe, R., Certini, G., & Ugolini, F. C. (2006). Soils: Basic concepts and future challenges. Retrieved from http://public.eblib.com/choice/publicfullrecord.aspx?p=321101

Soil Science Division Staff. (2017). Soil Survey Manual (Craig Ditzler, Kenneth Scheffe, & H. Curtis Monger, Eds.). Washington, D.C: Government Printing Office.

Varnes, D. J. (1984). Landslide hazard zonation: A review of principles and practice. Paris: Unesco.


Refbacks

  • There are currently no refbacks.